New Document
Computer Science
Computer Catlog
Comm Network Catlog

Network Components
Network Types
The OSI Model
Protocol Notations
Physical Layer
Transmission Media
Digitization and Synchronization
Physical Layer Standards
DataLink Layer
Error Checking
Retrans - Flow Control
Sliding Window Protocol
Data Link Layer Standards
Network Layer
Switching Methods
Congestion Control
Network Sub layers
Transport Layer
Transport Protocol
Transport Layer Standards
Session Layer
Session Layer Role
Session Protocol
Presentation Layer
Abstract Syntax Notation
Application Layer
Common Application
Specific Application
Message Handling
IEEE 802 Standards
ANSI FDDI Standard
Frame Relay
Broadband ISDN & ATM

Network Types

Networks may be divided into four different types and categories:

1. Geographic spread of nodes and hosts

    When the physical distance between the hosts is within a few kilometers, the network is said to be a Local Area Network (LAN). LANs are typically used to connect a set of hosts within the same building (e.g., an office environment) or a set of closely-located buildings (e.g., a university campus). For larger distances, the network is said to be a Metropolitan Area Network (MAN) or a Wide Area Network (WAN). MANs cover distances of up to a few hundred kilometers and are used for inteconnecting hosts spread across a city. WANs are used to connect hosts spread across a country, a continent, or the globe. LANs, MANs, and WANs usually coexist: closely-located hosts are connected by LANs which can access hosts in other remote LANs via MANs and WANs.

2. Access restrictions

    Most networks are for the private use of the organizations to which they belong; these are called private networks. Networks maintained by banks, insurance companies, airlines, hospitals, and most other businesses are of this nature. Public networks, on the other hand, are generally accessible to the average user, but may require registration and payment of connection fees. Internet is the most-widely known example of a public network. Technically, both private and public networks may be of LAN, MAN, or WAN type, although public networks, by their size and nature, tend to WANs.


3. Communication model employed by the nodes

    The communication between the nodes is either based on a point-to-point model or a broadcast model. In the point-to-point model, a message follows a specific route across the network in order to get from one node to another. In the broadcast model, on the other hand, all nodes share the same communication medium and, as a result, a message transmitted by any node can be received by all other nodes. A part of the message (an address) indicates for which node the message is intended. All nodes look at this address and ignore the message if it does not match their own address.

Communication Model

4. Switching model employed by the nodes

    In the point-to-point model, nodes either employ circuit switching or packet switching. Suppose that a host A wishes to communicate with another host B. In circuit switching, a dedicated communication path is allocated between A and B, via a set of intermediate nodes. The data is sent along the path as a continuous stream of bits. This path is maintained for the duration of communication between A and B, and is then released. In packet switching, data is divided into packets (chunks of specific length and characteristics) which are sent from A to B via intermediate nodes. Each intermediate node temporarily stores the packet and waits for the receiving node to become available to receive it. Because data is sent in packets, it is not necessary to reserve a path across the network for the duration of communication between A and B. Different packets can be routed differently in order to spread the load between the nodes and improve performance. However, this requires packets to carry additional addressing information.